Chapter 9

Economic Growth II: Technology, Empirics, and Policy

IN THIS CHAPTER, YOU WILL LEARN:

- how to incorporate technological progress in the Solow model
- about policies to promote growth
- about growth empirics: confronting the theory with facts
- two simple models in which the rate of technological progress is endogenous

Introduction

In the Solow model of Chapter 8,

- the production technology is held constant.
- income per capita is constant in the steady state.

Neither point is true in the real world:

- 1908–2008: U.S. real GDP per person grew by a _____ per year.
- examples of technological progress abound (see next slide).

Examples of technological progress

- From 1950 to 2000, U.S. farm sector productivity nearly tripled.
- The real price of computer power has fallen an average of 30% per year over the past three decades.
- 2000: _____ Internet users, _____ cell phone users
 2010: _____ billion Internet users, _____ billion cell phone users
- 2001: iPod capacity = ____gb, _____songs. Not capable of playing episodes of *True Blood*.
 2011: iPod touch capacity = ____gb, _____songs. Can play episodes of *True Blood*.

(64, 16,000) (5, 1000) (2.0, 3.8) (361 million, 740 million)

- A new variable: *E* = labor efficiency
- Assume:

Technological progress is **labor-augmenting**: it increases labor efficiency at the exogenous rate **g**:

• We now write the production function as:

- where L × E = the number of effective workers.
 - Increases in labor efficiency have the same effect on output as increases in the labor force.

• Notation:

y = _____ = output per effective worker
k = _____ = capital per effective worker

• Production function per effective worker:

y = ____

Saving and investment per effective worker:

What was the breakeven investment that makes the economy staying in steady state?

Now with technological growth,

break-even investment: ______ the amount of investment necessary to keep **k** constant.

Consists of:

- $-\delta k$ to replace depreciating capital
- *nk* to provide capital for new workers
- *gk* to provide capital for the new "effective" workers created by technological progress

Investment, break-even investment $\Delta \boldsymbol{k} = \boldsymbol{s} \, \boldsymbol{f}(\boldsymbol{k}) - (\delta + \boldsymbol{n} + \boldsymbol{g}) \boldsymbol{k}$

Capital per worker, **k**

Steady-state growth rates in the Solow model with tech. progress

Variable	Symbol	Steady-state growth rate
Capital per effective worker	$\boldsymbol{k} = \boldsymbol{K} / (\boldsymbol{L} \times \boldsymbol{E})$	0
Output per effective worker	$y = Y/(L \times E)$	0
Output per worker	$(Y/L) = y \times E$	
Total output	$Y = y \times E \times L$	

The Golden Rule with technological progress

To find the Golden Rule capital stock, express c^* in terms of k^* :

$$c^* = y^* - i^*$$

or equivalently, $MPK - \delta = \mathbf{n} + \mathbf{g}$

In the Golden Rule steady state, the marginal product of capital net of depreciation equals the pop. growth rate plus the rate of tech progress.

Growth empirics: Convergence

- Solow model predicts that, other things equal, poor countries (with lower Y/L and K/L) should grow faster than rich ones.
- If true, then the income gap between rich & poor countries would shrink over time, causing living standards to *converge*.
- In real world, many poor countries do NOT grow faster than rich ones. Does this mean the Solow model fails?

Growth empirics: Convergence

- What the Solow model really predicts is
 <u>convergence</u>—countries converge
 to their own steady states, which are
 determined by saving, population growth, and
 education.
- This prediction comes true in the real world.

Growth empirics:

Production efficiency and free trade

- Since Adam Smith, economists have argued that free trade can increase production efficiency and living standards.
- Research by Sachs & Warner:

Average annual growth rates, 1970–89				
	open	closed		
developed nations	2.3%	0.7%		
developing nations	4.5%	0.7%		

Policy issues

- Are we saving enough? Too much?
- What policies might change the saving rate?
- How should we allocate our investment between privately owned physical capital, public infrastructure, and human capital?
- How do a country's institutions affect production efficiency and capital accumulation?
- What policies might encourage faster technological progress?

Policy issues: Evaluating the rate of saving

 Use the Golden Rule to determine whether the U.S. saving rate and capital stock are too high, too low, or about right.

$$- \operatorname{If} (MPK - \delta) > (\boldsymbol{n} + \boldsymbol{g}),$$

U.S. economy is below the Golden Rule steady state and should increase *s*.

- If $(MPK - \delta) < (n + g)$, U.S. economy is above the Golden Rule steady state and should reduce **s**. Policy issues: Evaluating the rate of saving To estimate ($MPK - \delta$), use three facts about the U.S. economy:

1. *k* = 2.5 *y*

The capital stock is about 2.5 times one year's GDP.

2. $\delta k = 0.1 y$

About 10% of GDP is used to replace depreciating capital.

3. $MPK \times k = 0.3 y$

Capital income is about 30% of GDP.

To determine δ , divide 2 by 1:

To determine *MPK*, divide **3** by **1**:

Hence,
$$MPK - \delta = 0.12 - 0.04 = 0.08$$

Policy issues: Evaluating the rate of saving

- From the last slide: $MPK \delta = 0.08$
- U.S. real GDP grows an average of 3% per year,
 so *n* + *g* = 0.03
- Thus, $MPK - \delta = 0.08 > 0.03 = n + g$
- Conclusion:

The U.S. is _____ the Golden Rule steady state: Increasing the U.S. saving rate would increase consumption per capita in the long run.

Policy issues: How to increase the saving rate

- Reduce the government budget deficit (or increase the budget surplus).
- Increase incentives for private saving:

_____ capital gains tax, corporate income tax, estate tax, as they _____ saving.
 _____ federal income tax with a consumption tax.

 Expand tax incentives for IRAs (individual retirement accounts) and other retirement savings accounts.

Policy issues:

Allocating the economy's investment

- In the Solow model, there's one type of capital.
- In the real world, there are many types, which we can divide into three categories:

– _____ capital stock

_____ infrastructure

— _____: the knowledge and skills that workers acquire through education

How should we allocate investment among these types?

Private or public human capital