Chapter 11

Aggregate Demand I: Building the *IS-LM* Model

Aggregate Demand I: Building the *IS-LM* Model

MACROECONOMICS

N. Gregory Mankiw

PowerPoint® Slides by Ron Cronovich

© 2013 Worth Publishers, all rights reserved

IN THIS CHAPTER, YOU WILL LEARN:

- the *IS* curve and its relation to:
 - the Keynesian cross
 - the loanable funds model
- the *LM* curve and its relation to:
 - the theory of liquidity preference
- how the *IS-LM* model determines income and the interest rate in the short run when *P* is fixed

Context

- Chapter 10 introduced the model of aggregate demand and aggregate supply.
- Long run:
 - prices flexible
 - output determined by factors of production & technology
 - unemployment equals its natural rate
- Short run:
 - prices fixed
 - output determined by aggregate demand
 - unemployment negatively related to output

Context

- This chapter develops the *IS-LM* model, the basis of the aggregate demand curve.
- We focus on the short run and assume the price level is fixed (so the SRAS curve is horizontal).
- Chapters 11 and 12 focus on the closedeconomy case. Chapter 13 presents the openeconomy case.

The Keynesian cross

- A simple closed-economy model in which income is determined by expenditure. (*due to J. M. Keynes*)
- Notation:
 - **I** = planned investment

PE = **C** + **I** + **G** = planned expenditure

Y = real GDP = actual expenditure

 Difference between actual & planned expenditure = unplanned inventory investment

Graphing planned expenditure

Graphing the equilibrium condition

The equilibrium value of income

Marginal Propensity to Consume

- How big is the multiplier effect?
 It depends on how much consumers respond to increases in income.
- Marginal propensity to consume (MPC): the fraction of extra income that households consume rather than save
 E.g., if MPC = 0.8 and income rises \$100,
 - **C** rises \$80.

Solving for ΔY

- Y = C + I + G equilibrium condition
- $\Delta \boldsymbol{Y} = \Delta \boldsymbol{C} + \Delta \boldsymbol{I} + \Delta \boldsymbol{G}$ in changes
 - $= \Delta \boldsymbol{C} + \Delta \boldsymbol{G} \qquad \text{because } \boldsymbol{I} \text{ exogenous}$
 - = MPC × ΔY + ΔG because ΔC = MPC ΔY

Collect terms with ΔY on the left side of the equals sign:

$$(1 - MPC) \times \Delta \boldsymbol{Y} = \Delta \boldsymbol{G}$$

Solve for
$$\Delta \boldsymbol{Y}$$
:
 $\Delta \boldsymbol{Y} = \left(\frac{1}{1 - \text{MPC}}\right) \times \Delta \boldsymbol{G}$

A Formula for the Multiplier

The size of the multiplier depends on MPC.

E.g., if MPC = 0.5 multiplier = 2 if MPC = 0.75 multiplier = 4 if MPC = 0.9 multiplier = 10

A bigger *MPC* means changes in **Y** cause bigger changes in **C**, which in turn cause more changes in **Y**. The government purchases multiplier

Definition: the increase in income resulting from a \$1 increase in *G*.

In this model, the govt purchases multiplier equals

$$\frac{\Delta \boldsymbol{Y}}{\Delta \boldsymbol{G}} = \frac{1}{1 - \text{MPC}}$$

Example: If *MPC* = 0.8, then

$$\frac{\Delta \boldsymbol{Y}}{\Delta \boldsymbol{G}} = \frac{1}{1-0.8} = 5$$

An increase in **G** causes income to increase 5 times as much!

Why the multiplier is greater than 1

- Initially, the increase in **G** causes an equal increase in **Y**: $\Delta Y = \Delta G$.
- But $\uparrow \boldsymbol{Y} \Rightarrow \uparrow \boldsymbol{C}$
 - \Rightarrow further $\uparrow Y$
 - \Rightarrow further $\uparrow C$
 - \Rightarrow further $\uparrow Y$
- So the final impact on income is much bigger than the initial ΔG .

$$\Delta \boldsymbol{Y} = \Delta \boldsymbol{C} + \Delta \boldsymbol{I} + \Delta \boldsymbol{G}$$

$$= \Delta \boldsymbol{C}$$

$$= \Delta \boldsymbol{C}$$

$$= MPC \times (\Delta \boldsymbol{Y} - \Delta \boldsymbol{T})$$

$$= MPC \times (\Delta \boldsymbol{Y} - \Delta \boldsymbol{T})$$

Solving for $\Delta \boldsymbol{Y}$: $(1 - MPC) \times \Delta \boldsymbol{Y} = -MPC \times \Delta \boldsymbol{T}$

Final result:

$$\Delta \boldsymbol{Y} = \left(\frac{-\mathsf{MPC}}{1-\mathsf{MPC}}\right) \times \Delta \boldsymbol{T}$$

The tax multiplier

def: the change in income resulting from a \$1 increase in **T**:

$$\frac{\Delta \boldsymbol{Y}}{\Delta \boldsymbol{T}} = \frac{-\mathsf{MPC}}{1-\mathsf{MPC}}$$

If MPC = 0.8, then the tax multiplier equals

$$\frac{\Delta Y}{\Delta T} = \frac{-0.8}{1-0.8} = \frac{-0.8}{0.2} = -4$$

The tax multiplier

...is *negative:*

A tax increase reduces *C*, which reduces income.

...is greater than one (in absolute value): A change in taxes has a multiplier effect on income.

...is smaller than the govt spending multiplier: Consumers save the fraction (1 - MPC) of a tax cut, so the initial boost in spending from a tax cut is smaller than from an equal increase in **G**.

NOW YOU TRY Practice with the Keynesian cross

 Use a graph of the Keynesian cross to show the effects of an increase in planned investment on the equilibrium level of income/output.

ANSWERS Practice with the Keynesian cross

The IS curve

def: a graph of all combinations of *r* and *Y* that result in goods market equilibrium

i.e. actual expenditure (output) = planned expenditure

The equation for the *IS* curve is:

$$Y = C(Y - \overline{T}) + I(r) + \overline{G}$$

Why the IS curve is negatively sloped

- A fall in the interest rate motivates firms to increase investment spending, which drives up total planned spending (*PE*).
- To restore equilibrium in the goods market, output (a.k.a. actual expenditure, Y) must increase.

The IS curve and the loanable funds model

(a) The L.F. model

(b) The IS curve

Fiscal Policy and the IS curve

- We can use the *IS-LM* model to see how fiscal policy (*G* and *T*) affects aggregate demand and output.
- Let's start by using the Keynesian cross to see how fiscal policy shifts the *IS* curve...

Shifting the *IS* curve: ΔG

At any value of r, $\uparrow G$ $\Rightarrow \uparrow PE \Rightarrow \uparrow Y$

...so the *IS* curve shifts to the right.

The horizontal distance of the *IS* shift equals

$$\Delta \boldsymbol{Y} = \frac{1}{1-MPC} \Delta \boldsymbol{G}$$

NOW YOU TRY Shifting the IS curve: ΔT

- Use the diagram of the Keynesian cross or loanable funds model to show how an increase in taxes shifts the IS curve.
- If you can, determine the size of the shift.

ANSWERS Shifting the IS curve: ΔT

The theory of liquidity preference

- Due to John Maynard Keynes.
- A simple theory in which the interest rate is determined by money supply and money demand.

Money supply

The supply of real money balances is fixed:

 $(\boldsymbol{M}/\boldsymbol{P})^{\boldsymbol{s}} = \bar{\boldsymbol{M}}/\bar{\boldsymbol{P}}$

Money demand

Demand for real money balances:

$$(\boldsymbol{M}/\boldsymbol{P})^{\boldsymbol{d}} = \boldsymbol{L}(\boldsymbol{r})$$

Equilibrium

The interest rate adjusts to equate the supply and demand for money:

$$\overline{\boldsymbol{M}}/\overline{\boldsymbol{P}} = \boldsymbol{L}(\boldsymbol{r})$$

How the Fed raises the interest rate

CASE STUDY: Monetary Tightening & Interest Rates

- Late 1970s: $\pi > 10\%$
- Oct 1979: Fed Chairman Paul Volcker announces that monetary policy would aim to reduce inflation
- Aug 1979–April 1980:
 Fed reduces *M/P* 8.0%
- Jan 1983: π = 3.7%

How do you think this policy change would affect nominal interest rates?

The LM curve

Now let's put **Y** back into the money demand function:

$$(\boldsymbol{M}/\boldsymbol{P})^{\boldsymbol{d}} = \boldsymbol{L}(\boldsymbol{r},\boldsymbol{Y})$$

The *LM* curve is a graph of all combinations of *r* and *Y* that equate the supply and demand for real money balances.

The equation for the *LM* curve is:

$$\bar{M}/\bar{P} = L(r,Y)$$

Deriving the LM curve

Why the LM curve is upward sloping

- An increase in income raises money demand.
- Since the supply of real balances is fixed, there is now excess demand in the money market at the initial interest rate.
- The interest rate must rise to restore equilibrium in the money market.

How ΔM shifts the LM curve

NOW YOU TRY Shifting the *LM* curve

- Suppose a wave of credit card fraud causes consumers to use cash more frequently in transactions.
- Use the liquidity preference model to show how these events shift the *LM* curve.

ANSWERS Shifting the LM curve

The short-run equilibrium

The short-run equilibrium is the combination of *r* and *Y* that simultaneously satisfies the equilibrium conditions in the goods & money markets:

$$Y = C(Y - \overline{T}) + I(r) + \overline{G}$$
$$\overline{M}/\overline{P} = L(r,Y)$$

Equilibrium interest rate

Equilibrium level of income

LM

IS

The Big Picture

Preview of Chapter 12

In Chapter 12, we will

- use the *IS-LM* model to analyze the impact of policies and shocks.
- learn how the aggregate demand curve comes from *IS-LM*.
- use the *IS-LM* and *AD-AS* models together to analyze the short-run and long-run effects of shocks.
- use our models to learn about the Great Depression.

CHAPTER SUMMARY

- 1. Keynesian cross
 - basic model of income determination
 - takes fiscal policy & investment as exogenous
 - fiscal policy has a multiplier effect on income
- 2. *IS* curve
 - comes from Keynesian cross when planned investment depends negatively on interest rate
 - shows all combinations of *r* and *Y* that equate planned expenditure with actual expenditure on goods & services

CHAPTER SUMMARY

- 3. Theory of liquidity preference
 - basic model of interest rate determination
 - takes money supply & price level as exogenous
 - an increase in the money supply lowers the interest rate
- 4. *LM* curve
 - comes from liquidity preference theory when money demand depends positively on income
 - shows all combinations of *r* and *Y* that equate demand for real money balances with supply

CHAPTER SUMMARY

5. IS-LM model

Intersection of *IS* and *LM* curves shows the unique point (*Y*, *r*) that satisfies equilibrium in both the goods and money markets.