The Economics of Money, Banking, and Financial Markets

Twelfth Edition

Chapter 4

The Meaning of Interest Rates

Preview

- Before we can go on with the study of money, banking, and financial markets, we must understand exactly what the phrase interest rates means. In this chapter, we see that a concept known as the yield to maturity is the most accurate measure of interest rate.

Learning Objectives

- Calculate the present value of future cash flows and the yield to maturity on the four types of credit market instruments.
- Recognize the distinctions among yield to maturity, current yield, rate of return, and rate of capital gain.
- Interpret the distinction between real and nominal interest rates.

Measuring Interest Rates

- Present value: a dollar paid to you one year from now is less valuable than a dollar paid to you today.
- Why: a dollar deposited today can earn interest and become $\$ 1 \times(1+\mathrm{i})$ one year from today.
- To understand the importance of this notion, consider the value of a $\$ 20$ million lottery payout today versus a payment of $\$ 1$ million per year for each of the next 20 years. Are these two values the same?

Present Value

Let $i=.10$

$$
\begin{gathered}
\text { In one year: } \$ 100 \times(1+0.10)=\$ 110 \\
\text { In two years: } \$ 110 \times(1+0.10)=\$ 121 \\
\text { or } \$ 100 \times(1+0.10)^{2}
\end{gathered}
$$

In three years: $\$ 121 \times(1+0.10)=\$ 133$

$$
\text { or } \$ 100 \times(1+0.10)^{3}
$$

In n years
$\$ 100 \times(1+i)^{n}$

Simple Present Value (1 of 2)

$$
\begin{gathered}
\mathrm{PV}=\text { today's (present) value } \\
\mathrm{CF}=\text { future cash flow (payment) } \\
i=\text { the interest rate } \\
\mathrm{PV}=\frac{\mathrm{CF}}{(1+i)^{n}}
\end{gathered}
$$

Simple Present Value (2 of 2)

- Cannot directly compare payments scheduled in different points in the time line

Year	$\$ 100$	$\$ 100$	$\$ 100$
PV	100	1	2

Four Types of Credit Market Instruments

- Simple Loan
- Fixed Payment Loan
- Coupon Bond
- Discount Bond

Yield to Maturity

- Yield to maturity: the interest rate that equates the present value of cash flow payments received from a debt instrument with its value today

Yield to Maturity on a Simple Loan

$$
\begin{gathered}
\mathrm{PV}=\text { amount borrowed }=\$ 100 \\
\mathrm{CF}=\text { cash flow in one year }=\$ 110 \\
n=\text { number of years }=1 \\
\$ 100=\frac{\$ 110}{(1+i)^{1}} \\
(1+i) \$ 100=\$ 110 \\
(1+i)=\frac{\$ 110}{\$ 100} \\
i=0.10=10 \%
\end{gathered}
$$

For simple loans, the simple interest rate equals the yield to maturity

Fixed-Payment Loan

The same cash flow payment every period throughout the life of the loan

LV = loan value
FP = fixed yearly payment
$n=$ number of years until maturity

$$
\mathrm{LV}=\frac{\mathrm{FP}}{1+i}+\frac{\mathrm{FP}}{(1+i)^{2}}+\frac{\mathrm{FP}}{(1+i)^{3}}+\ldots+\frac{\mathrm{FP}}{(1+i)^{n}}
$$

Coupon Bond (1 of 4)

Using the same strategy used for the fixed-payment loan:

$$
\begin{gathered}
\mathrm{P}=\text { price of coupon bond } \\
\mathrm{C}=\text { yearly coupon payment } \\
\mathrm{F}=\text { face value of the bond } \\
n=\text { years to maturity date } \\
\mathrm{P}=\frac{\mathrm{C}}{1+i}+\frac{\mathrm{C}}{(1+i)^{2}}+\frac{\mathrm{C}}{(1+i)^{3}}+\ldots+\frac{\mathrm{C}}{(1+i)^{n}}+\frac{\mathrm{F}}{(1+i)^{n}}
\end{gathered}
$$

Coupon Bond (2 of 4)

- When the coupon bond is priced at its face value, the yield to maturity equals the coupon rate.
- The price of a coupon bond and the yield to maturity are negatively related.
- The yield to maturity is greater than the coupon rate when the bond price is below its face value.

Coupon Bond (3 of 4)

Table 1 Yields to Maturity on a 10\%-Coupon-Rate Bond Maturing in Ten Years (Face Value $=\$ 1,000$)

Price of Bond (\$)	Yield to Maturity (\%)
1,200	7.13
1,100	8.48
1,000	10.00
900	11.75
800	13.81

Coupon Bond (4 of 4)

- Consol or perpetuity: a bond with no maturity date that does not repay principal but pays fixed coupon payments forever

$$
P=\mathrm{C} / i_{c}
$$

$P_{c}=$ price of the consol
$C=$ yearly interest payment
$I_{\mathrm{c}}=$ yield to maturity of the consol
can rewrite above equation as this: $i_{c}=C / P_{c}$
For coupon bonds, this equation gives the current yield, an easy to calculate approximation to the yield to maturity

Discount Bond

For any one year discount bond

$$
\begin{gathered}
i=\frac{\mathrm{F}-\mathrm{P}}{\mathrm{P}} \\
\mathrm{~F}=\text { Face value of the discount bond } \\
\mathrm{P}=\text { Current price of the discount bond }
\end{gathered}
$$

The yield to maturity equals the increase in price over the year divided by the initial price.

As with a coupon bond, the yield to maturity is negatively related to the current bond price.

The Distinction Between Interest Rates and Returns (1 of 4)

- Rate of Return:

The payments to the owner plus the change in value expressed as a fraction of the purchase price

$$
\mathrm{RET}=\frac{\mathrm{C}}{\mathrm{P}_{t}}+\frac{\mathrm{P}_{t+1}-\mathrm{P}_{t}}{\mathrm{P}_{t}}
$$

RET $=$ return from holding the bond from time t to time $t+1$

$$
\begin{gathered}
\mathrm{P}_{t}=\text { price of bond at time } t \\
\mathrm{P}_{t+1}=\text { price of the bond at time } t+1 \\
\mathrm{C}=\text { coupon payment } \\
\frac{\mathrm{C}}{\mathrm{P}_{t}}=\text { current yield }=i_{c} \\
\frac{\mathrm{P}_{t+1}-\mathrm{P}_{t}}{\mathrm{P}_{t}}=\text { rate of capital gain }=g
\end{gathered}
$$

The Distinction Between Interest Rates and

Returns (2 of 4)

- The return equals the yield to maturity only if the holding period equals the time to maturity.
- A rise in interest rates is associated with a fall in bond prices, resulting in a capital loss if time to maturity is longer than the holding period.
- The more distant a bond's maturity, the greater the size of the percentage price change associated with an interestrate change.
- Interest rates do not always have to be positive as evidenced by recent experience in Japan and several European states.

The Distinction Between Interest Rates and Returns (3 of 4)

- The more distant a bond's maturity, the lower the rate of return the occurs as a result of an increase in the interest rate.
- Even if a bond has a substantial initial interest rate, its return can be negative if interest rates rise.

The Distinction Between Interest Rates and Returns (4 of 4)

Table 2 One-Year Returns on Different-Maturity 10\%-CouponRate Bonds When Interest Rates Rise from 10\% to 20%

(1) Years to Maturity When Bond Is Purchased	(2) Initial Current Yield (\%)	(3) Initial Price (\$)	(4) Price Next Year* (\$)	(5) Rate of Capital Gain (\%)	(6) Rate of Return [col (2) + col (5)] (\%)
30	10	1,000	503	-49.7	-39.7
20	10	1,000	516	-48.4	-38.4
10	10	1,000	597	-40.3	-30.3
5	10	1,000	741	-25.9	-15.9
2	10	1,000	917	-8.3	+1.7
1	10	1,000	1,000	0.0	+10.0

*Calculated with a financial calculator, using Equation 3.

Maturity and the Volatility of Bond Returns: Interest-Rate Risk

- Prices and returns for long-term bonds are more volatile than those for shorter-term bonds.
- There is no interest-rate risk for any bond whose time to maturity matches the holding period.

The Distinction Between Real and Nominal Interest Rates

- Nominal interest rate makes no allowance for inflation.
- Real interest rate is adjusted for changes in price level so it more accurately reflects the cost of borrowing.
- Ex ante real interest rate is adjusted for expected changes in the price level
- Ex post real interest rate is adjusted for actual changes in the price level

Fisher Equation

$$
\begin{gathered}
i=i_{r}+\pi^{e} \\
i=\text { nominal interest rate } \\
i_{r}=\text { real interest rate } \\
\pi^{e}=\text { expected inflation rate }
\end{gathered}
$$

When the real interest rate is low,
there are greater incentives to borrow and fewer incentives to lend.
The real interest rate is a better indicator of the incentives to borrow and lend.

Pearson

Figure 1 Real and Nominal Interest Rates (Three-Month Treasury Bill), 1953-2017

Sources: Nominal rates from Federal Reserve Bank of St. Louis FRED database: http://research.stlouisfed.org/fred2/. The real rate is constructed using the procedure outlined in Frederic S. Mishkin, "The Real Interest Rate: An Empirical Investigation," Carnegie-Rochester Conference Series on Public Policy 15 (1981): 151-200. This procedure involves estimating expected inflation as a function of past interest rates, inflation, and time trends, and then subtracting the expected inflation measure from the nominal interest rate.

Pearson Copyright © 2019, 2016, 2013 Pearson Education, Inc. All Rights Reserved.

Copyright

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

