
Stata Walkthrough: Graphics.

For this walkthrough, you will need to download the database on US workers in the

March 2005 CPS and the one on cod catches. Start with the CPS (If you have an

error loading the database, try typing the command set mem 100m to increase the

memory used by Stata.)

Highest educational attainment is a categorical variable, described in six levels: less

than high school, some high school, high school, technical or associate’s degree or

some college, college degree, and professional or graduate degree. These are

captured in the variable educ (which takes values 1 through 6) or equivalently in the

dummy variables educ1 through educ6.

The simplest way to illustrate these graphically is through a bar graph or pie graph.

The command for the first of these is graph bar educ1-educ6 (the dash

indicates variables educ1 through educ6, as they are listed in the variable window.)

Try both of these commands.

One thing you will notice is that the bar graph returns decimal values. It is telling

you the fraction of the sample in each category. This is because the default option

for a bar graph is to report the mean of the variable (and the mean of a dummy

variable is the fraction in that group). If you want to know the total number in each

category, try

graph bar (sum) educ1-educ6

You can also specify other descriptive statistics in parentheses after the word bar;

check the help files.

To construct a pie chart, type

graph pie educ1-educ6

This produces a colorful, uninformative pie chart. You can add in additional

information:

graph pie educ1-educ6, plabel(_all percent)

will superimpose the fraction in each category;

graph pie educ1-educ6, plabel(_all sum)

will tell you the absolute numbers in each group. (Read the help files for other

information that you can superimpose.) Finally, rather than creating a bunch of

dummy variables educ1 through educ6, you can also the categorical variable educ

to produce a pie chart. In this case, you type:

graph pie, over(educ)

The output is the same, and you can superimpose information in the same way.

However, you know that I don’t particularly care for pie charts, since I find that they

rarely invite comparisons, which is one principle for good graphics. We can create a

bunch of side-by-side pie charts using the command:

graph pie educ1-educ6 if race<5, by(race)

The option by signals “side-by-side”. Also, note that I’ve added a qualifier to this

statement, to include people with race less than 5. In the CPS, the race codes are 1

for Caucasian, 2 for African, 3 for Native American, and 4 for Asian; codes of 5 and

above are for smaller minorities (mostly multiracial people, but also Pacific islanders).

I just wanted to restrict our attention to the big four groups.

You can also create bar graphs to tell some summary statistic across different groups.

If you want to display the mean salaries of workers with different educational levels,

you would type:

graph bar (mean) salary, over(educ)

You could replace mean with median, if that’s the statistic you’re interested in.

What’s the difference between over and by? Try typing:

graph bar (mean) salary, by(educ)

This generates side-by-side bar graphs, displaying a single statistic in each: the mean

of the variable. You’d never do something as simple as this, but I wanted to show

you the difference between these commands. However, you can do some other cool

stuff. Try this one:

graph bar (mean) salary if race<5, over(educ) by(race)

This displays graphics with the returns to education for different racial groups. The

labels are a bit cluttered, but we’ll deal with that later.

Anyhow, we’ve started describing bivariate data (and even trivariate, in that last

case!). As we know, the most common ways to describe a joint distribution are with

a time-series graph or a scatterplot. This database doesn’t have a time series, so we’ll

have to switch. Type clear to unload the CPS data, and then open the one on cod.

A time series is simple. Type

sort year

to ensure that your data is in the correct order (otherwise, you’ll get funky graphs)

and then

graph twoway line cod year

There’s your time series graph, showing how cod catches have evolved over time.

Again, I dislike graphs that don’t invite comparison, so I’d recommend showing at least

two related variables over time. You can do this easily by giving a list of the variables

you want plotted; Stata always interprets the last one to be the x-axis. Try:

graph twoway line cod canada year

Now you can see how Canadian catches compare to the rest of the world—during

the 1980s, Canada was virtually monopolizing the trade.

Now let’s move on to scatterplots. Let’s suggest the relationship between worldwide

cod catches and Canadian cod catches in a scatterplot. There are two syntaxes that

gives us exactly the same result:

scatter cod canada

graph twoway scatter cod canada

Generally, the command for graphic bivariate data is graph twoway, followed by

the type of graph you want—scatter, in this case—followed by the list of variables.

Because scatterplots are so common, we’re allowed to use the first syntax as a

shortcut. However, there are times where the lengthier version is useful. One would

be when we want to superimpose two graphics. Here’s an example:

graph twoway (scatter cod canada) (lfit cod canada)

lfit is a special type of graph that produces the best linear fit of the data, exactly

the same line that I asked you to produce in a “perfect scatterplot”. Another

ingredient of the perfect scatterplot was (possibly) labeling the datapoints, which can

also be done in Stata:

graph twoway (scatter cod canada, mlabel(year)) (lfit

cod canada)

This now tells us which datapoint is from which year. Perfect! The only thing that’s

missing are box-and-whisker plots on the axes, which is a bit more challenging. Let’s

deal with some other things first.

Some of these graphs have had cluttered labels, and some have been missing labels

entirely. By default, Stata will label your axes with the labels attached to your

variables, if there is one. Type describe to see how each variable is labeled.

You might want to add labels or change them. One way to do this is to relabel the

variables themselves (the other is to change the labels in a particular graphic). To do

this, you might type:

label variable canada “Canadian fish”

label variable cod “Worldwide fish”

Now when you type scatter cod canada, you’ll see your new labels on the axes

of the graphic. However, if you want to override these labels for a particular graphic,

you can instruct Stata to add titles to the axes:

scatter cod canada, xtitle("Fish from Canada")

ytitle("Fish worldwide")

You can also play with the numbers that are labeled on the particular axes. By

default (in this graphic—not generally), Stata wants to put a tick mark and a label at

each multiple of 200 on the vertical axis, and at each multiple of 50 on the horizontal

axis. That’s fine, but let’s say that you wanted a tick mark at every multiple of 50 on

the vertical axis. You would type:

scatter cod canada, ytick(0 (50) 800)

This places a tick mark at every multiple of 50 from 0 to 800 on the y-axis. You

could add something similar for the x-axis:

scatter cod canada, ytick(0 (50) 800) xtick(0 (25) 250)

You can also tell Stata which numbers you want labeled; it’s still labeling only every

multiple of 200 on the vertical axis. We could change that to multiples of 100 by

simply entering:

scatter cod canada, ytick(0 (50) 800) ylabel(0 (100) 800)

You can use any or all of the commands xlabel, ylabel, xtick, and ytick in a

graphic, depending on your needs.

The last thing we’re going to do is to combine several graphics into a single image, in

my “perfect scatterplot.” The first step is to create a boxplot each axis:

graph box canada, fxsize(20) saving(leftgraph)

graph hbox cod, fysize(20) saving(bottomgraph)

There are two novelties in each case. First, we restrict the size of the first graph to

be only 20% of the normal x-dimension, and the second to be only 20% of the y-

dimension. Next, we save the output of each to a Stata file in your current directory.

We can access these later, which is exactly what we want to do. (Note: if you screw

up a graph the first time but you have saved your bad results to a file, you will have to

type something like saving(leftgraph, replace) to write over the original

results.)

Next, we want to create the main graph. We will type:

graph twoway (scatter cod canada) (lfit cod canada),

saving(maingraph) ylabel(none) ytitle("") xlabel(none)

xtitle("") legend(off)

This creates two graphs in the same space: one which is the scatterplot of the two

variables, and the other which gives the best explanation of the relationship. We

have told Stata to save the results to a file, and we have also suppressed the titles on

the x-axis and y-axis, as well as the numerical labels. This makes the graph look silly

on its own, but it will look better in combination with the others. We’ve also told it

not to print a legend on the graph, which will make the center image the same size as

the other two graphs. (Stata usually adds a legend, explaining that the dots are actual

values, and the line is the fitted relationship.) We really should add this in at a later

point, but we’re not going to bother.

Finally, to combine the three graphics in a single image, we need to type:

graph combine leftgraph.gph maingraph.gph

bottomgraph.gph, cols(2) holes(3)

(Although generally Stata doesn’t care about file extensions, you do need to specify

.gph here.) The graph combine command tells Stata to place all of the following

graphs into a single one, arranged in the number of columns we tell it (two, in this

case). What’s that hole(3) option? Generally, the output of a command like

graph combine a b c d e f, cols(2) would look like this:

Graph A Graph B

Graph C Graph D

Graph E Graph F

However, if we want to leave one of the spots blank—the third one, for example—

we tell Stata to put a “hole” in that spot. So graph combine a b c d e,

cols(2) hole(3) would look like:

Graph A Graph B

-- Graph C

Graph D Graph E

In this case, we want to place the horizontal box-and-whisker plot immediately

below the main graph, so we needed to tell Stata to place a hole in the third entry.

Anyhow, now we’re done: we’ve created a very informative, super sophisticated

graphic in Stata. It combines a simple description of the two variables, a plot of

their joint distribution, and a line suggesting the relationship between the two.

